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Abstract

Battle Cancer Chemotherapeutic Drug Resistance 

Mikael Lindahl

Cancer patients develop chemotherapeutic drug resistance during repetitive
treatments. Patients who developed drug resistance stop responding to treatment and
their chances to survive drastically decrease. Alternative drugs that reverse the
resistance and methods that can be used to find such drugs are needed. 

In this thesis work a novel computational method for finding alternative drugs for
treatment of resistant cancer cells has been developed. Mathematical models of the
dynamic cell cycle have been developed and used to characterize dynamics of sensitive
and resistant cell lines with as well as without drug treatments. Using Bayesian
inference, a procedure for assigning probabilities to different candidate models given
an observed cell cycle time series has been developed. The assigned probabilities
were used to determine the drugs with the highest probabilities of reversing the drug
resistance among a set of substances. 

The method has been evaluated on in silico created experimental data of cell cycle
progression. The result is promising, from a database containing cell cycle models for
varies drugs the method successfully singled out the ones with ability to reverence the
resistance.     
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Populärvetenskaplig beskrivning 
Cancer är ett samlingsnamn för sjukdomar där celler i kroppen gått in i ett irreversibelt 

tillstånd med konstant tillväxt. Det är en sjukdom som berör oss på många sätt. De flesta 

känner antagligen till någon som har eller har haft cancer och var tredje person i Sverige 

drabbas någon gång under sin livstid av cancer. 

 

Cancer kan behandlas på tre sätt; genom strålning, kirurgi och cellgiftbehandling. 

Behandlingarna kan kombineras för att öka effektiviteten. I ett fåtal men farliga cancer 

sorter (bl.a. olika sorters blodcancer även kallat leukemi) är cellgift huvudbehandlingen. 

Utvecklande av resistens vid behandling av dessa cancrar är förödande och i värsta fallet 

är patienten dödsdömd efter att cancer cellerna utvecklat resistens. Vid resistens har 

cancercellerna utvecklat en mekanism som gör att cellgiftet fungerar avsevärt sämre på 

dem. En resistensmekanism kan till exempel vara att det skett en effektivisering av 

pumpproteiner i cell membranet som har till uppgift att pumpa ut cellgiftet. Det leder till 

att cellgiftnivån i cellerna inte når den nödvändiga koncentrationen för att stoppa 

celltillväxten. I ett sådant fall vore det önskvärt att identifiera en substans som kan 

hämma pumparna så att mindre cellgift pumpas ut och koncentrationen av cellgift når 

önskvärda nivåer.  

 

I detta arbete har en metod utvecklas som kan användas till att identifiera läkemedel för 

behandling av resistenta cancerceller. Till det används modeller som beskriver 

cellcykeltillväxten över tiden. I metoden identifieras skillnaden mellan cellcykelmodeller 

av resistenta och känsliga cancerceller. Skillnaden beskriver hur cellcykelsvaret bör 

förändras för att resistenta celler ska övergå till att uppföra sig som känsliga. Vidare går 

det att för läkemedelskandidater identifiera hur de förändrar modellen för känsliga celler. 

Dessa modellförändringar kan sparas i en databas i vilken läkemedel kan sökas efter som 

genererar en liknande modellförändring som den mellan resistenta och känsliga celler. 

  

Metoden testades på in silico skapad experimentellt cellcykeldata med en cell linje och 

20 substanser. Den lyckades med att utskilja kandidat substanserna för behandling av 

resistenta cancerceller. Metoden är helt ny och i detta arbete har metoden utvecklats från 

scratch samt testat i ett pilotförsök för att undersöka dess potential. Nästa steg i 

utvecklingen är att använda metoden på experimentellt material från in vitro studier.     
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Glossary 

Arrayscan™: is an instrument which optically scans plates and count the number of cells 

with specific biomarkers.  

Flow cytometry: it is a technique for counting, examining and sorting cell suspended in 

a stream of fluid. It allows simultaneous multiparametric analysis of the physical and/or 

chemical characteristics of single cells flowing through an optical and/or electronic 

detection apparatus. 

Metastasis: the spread of cancer from one part of the body to another.  

Mitosis: the process in cell division (mitotic cell – a cell that undergoes cell division)  

In vitro: experiment in an artificial environment, such as a test tube. 

In silico: experiment within a computer-simulated environment. 

Proliferation: growth (often used when talking about cell growth) 

Reversed chemical control: finding alternative drugs which can make resistant cells 

sensitive again 

 

Contents overview 
Chapter 1: Introduction, introduction and background to the subject and goal of this 

work.  

 

Chapter 2: Theory, description of the mathematical cell cycle phase model, of the model 

parameter estimation and of the alternative drug search method. 

  

Chapter 3: In silico experimental setup, a description of the setup and assumption of the 

in silicon experiments used to evaluate alternative drug search method. a method which 

can be used to find alternative drugs for treatment of resistant cancer cells.  

 

Chapter 4: Results, the results of the performance of the alternative drug search method 

when used upon the in silico created experimental data.  

 

Chapter 5: Discussion, discussion of the result, theoretical assumptions, and future 

problems to be solved. 

 

Chapter 6: Conclusions.    

 

Chapter 7: Bibliography.  

http://en.wikipedia.org/wiki/Parametric_model
http://en.wikipedia.org/wiki/Physical
http://en.wikipedia.org/wiki/Chemical
http://en.wikipedia.org/wiki/Optical
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1 Introduction 
This Master of Science thesis work has been conducted at the Unit of Clinical 

Pharmacology at the Department of Medical Sciences at Uppsala University. The goal 

has been to create a method which uses mathematical cell cycle phase models of treated 

and untreated cancer cells to identify drugs and substances for refined treatment of 

resistant cancer cells. 

 

1.1 Background 

1.1.1 Chemotherapy  

Chemotherapy was coined by Ehrlich at the beginning of the century and was meant to 

describe the use of chemical compound in the destruction of infective agents (Pang et al 

1999). The definition of chemotherapy today has broadened and now also describes the 

use of antibiotics – substances produced by microorganisms that inhibit the growth of 

other microorganisms. The term chemotherapy is now also used to describe synthetically 

or organically produced chemical compounds which are used to inhibit the growth of 

malignant or cancerous cells within the body. (Pang et al 1999)   

 

1.1.1.1 Cancer Chemotherapy  

Cancer chemotherapy is one out of three main approaches for treating established cancer. 

The other two are surgical excision and irradiation. The approach to be used depends 

upon the type of cancer and the stage of its development. Chemotherapy is only the main 

treatment method for a few types of cancers
1
 but it is often used in combination with 

surgery or irradiation. It has been proven difficult to identify cancer cell specific 

properties in comparison to normal cells which chemotherapy substances can target. 

There exist four main characteristics that in varying degree distinguish them from normal 

cells; uncontrolled cell proliferation, dedifferentiation, invasiveness and metastasis.(Pang 

et al 1999) In uncontrolled proliferation the normal processes that regulate cell division 

are disabled. Dedifferentiated cells have loss their ability to differentiate from stem cells 

into mature cells such as muscle or liver cells. Cells that are invasive have the ability to 

function outside there tissue origin, for example liver cell that appears in the bladder. 

Metastases occur when a secondary tumor is developed out of cells from the primary 

tumor at a new location in the body. These characteristic vary between cancers which 

means that drugs targeting one of these characteristic can have varying effects upon 

different cancers.  

 

                                                 

 
1
 For example: Hodgkin’s disease, Non-Hodgkin’s lymphoma, Chronic granulocytic leukemia, Acute 

lymphocytic leukemia, Hairy cell leukemia, Germ cell cancer (festis, ovary), Choriocarcinoma and Prostate 

cancer.   
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1.1.1.2 The relevance of the cell cycle in chemotherapy  

The mitotic cell cycle can be considered to consist of four different phases G1 (gearing 

up before DNA replication), S (DNA replication), G2 (Cell division preparation) and M 

(mitosis or cell division) (See figure 2). A property of cancer cells is that they are 

constantly dividing and therefore always is in the mitotic cell cycle. By contrast normal 

cells are often placed in the passive G0 phase. Many chemotherapy cancer drugs acts 

upon the cell cycle forcing the cancer cells to go into apoptosis programmed cell death. 

Most of the current available chemotherapeutic drugs such as cytarbine, hydroxyuera, 

flouracil, methotrexate and merceptopurin act in S phase but some also act in M phase 

such as the vinca alkaloids. Some of these compounds also act upon G1 phase. Moreover, 

there are also a number of drugs like alcylating agents, dactinomyecin, doxorubicin and 

cisplatin which have no cycling specific inhibitor effect. (Pang et al 1999)  The fact that 

many chemotherapeutic drugs act selectively (but also non-selectively) upon the cell 

cycle is a reason to why the cell cycle as model can help to characterize 

chemotherapeutic drug effects.  

 

1.1.2 Chemotherapy drugs resistance  

The resistance of cancer cells against cytotoxic drugs can either be present when the drug 

is first given or acquired during treatment. Resistance can be acquired through adaptation 

with the emergence of cells which are less effected by the drug and therefore has an 

selective advantage over the sensitive cells. (Pang et al 1999) 

 

1.1.2.1 Relevance in the medical field 

The development of chemotherapeutic drug resistance in cancer cells is a very serious 

problem. Studies have shown that cancer cell which becomes resistant towards a specific 

drug during chemotherapeutic treatment also may become cross-resistant towards other 

drugs with different drug mechanisms. Moreover an alarming fact is that drug resistance 

is thought to cause treatment failure in over 90 percent of patients with metastatic cancer. 

(Longly and Johnston 2005) Thus if drug resistance would be overcome then the 

treatment survival rate would be significantly increased. Refined methods which can 

combat drug resistance are clearly needed.  

 

1.2 Battling chemotherapy drug resistance  

1.2.1 Conventional methods 

A natural approach to combat resistance would be to identify alternative drugs which 

could suppress the resistance mechanisms making the resistant cancer cells sensitive 

again. However, how to find such drugs is a highly nontrivial task. The standard 

approaches today are high throughput chemical screening for new compounds and target 

identification via gene expression microarrays comparing sensitive and resistant cells. 

Unfortunately, microarrays are expensive to produce and high throughput chemical 

screening is both expensive and difficult to accomplish considering the large number of 

possible molecules in chemical space. 
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1.2.2 Novel developments  

1.2.2.1 Connectivity map 

Fortunately a novel strategy which we here denote reversed chemical control was 

recently invented and published in Science by Lamb et al (Lamb et al 2006). Lamb et al 

identified 164 drug induced mRNA signatures. The MCF7 cancer cell line was treated 

with each of the 164 drugs and the mRNA levels were measured using microarrays at 0 

hours and 6 hours. Then for each drug the difference between the mRNA expression 

levels obtained at 0 and 6 hours were calculated and stored in a database. Further 

analyzes with pattern-matching tools which can identify similarities among the signatures 

could then be performed. The resource they developed was referred to as the 

“Connectivity Map” (C-Map) due to its prospective in revealing “connections” among 

drugs, genes and diseases.  

 

Microarrays can be used to identify how the gene activity differs between treated 

resistant and treated sensitive cancer cells. The mRNA activity induced in a cell by a drug 

is measured by incubating the cancer cells together with the drug for 6 hours. At the end 

of the time period mRNA are extracted and the mRNA activity are measured using 

microarrays. The differences in gene levels between treated sensitive and treated resistant 

cancer cells are then identified. Finally the resistance mechanism is then reversed using 

drugs that induce the opposite gene activity. Such drugs are search for in the C-Map 

database were the changes in mRNA activity induced by different drugs in sensitive 

MCF7 cells are stored. Treating the resistant cancer cells with a drug that induces the 

opposite change in gene activity will hopefully then make the resistant cells sensitive 

again through the reversal of mRNA activity of the resistant cells. The resistant cells 

should then respond as treated sensitive cells to a combination treatment consisting of 

this alternative drug found and the original drug resistance has been developed against. 

The method presented in this thesis may be regarded as an attempt to generalize the C-

Map approach to accomplish reversed chemical control but instead of using static mRNA 

signatures, dynamic cell cycle models signatures are used. 

 

1.2.2.2 The work of Panetta et al 

The background to the cell cycle model used in this paper can be found in the two papers 

“A mathematical model of in vitro cancer cell growth and treatment with the antimitotic 

agent curacin A”  (Kozusko et al 2000) and ”Mechanistic mathematical modeling of 

mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells”
 

(Panetta et al 2006) The first paper focus on modeling drug dosing effect and the second 

paper focus on revealing mechanisms behind drug resistance through modeling. In both 

articles a cell cycle model is developed to describe the dynamics of cancer growth.  

 

Cell cycle model of the first paper has in the second paper ”Mechanistic mathematical 

modeling of mercaptopurine effects on cell cycle of human acute lymphoblastic 

leukaemia cells ”
 
been expanded. Instead a two compartments model representing cell 

cycling now a three compartment model is employed. To give a background to the origin 

the cell cycle model used in this work the second paper briefly will be presented and 

discussed. 
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The second paper deals with the problem of cancer drug resistance. A mathematical 

model supposed to capture the dynamics of lymphoblastic leukemia cells treated with 

mercaptopurine (MP) an antimetabolic agent in one sensitive - Molt-4 sensitive - and two 

resistant – Molt-4 resistant and P12 – cell lines has been developed. The results from the 

mathematical modeling showed that the MP sensitive cells lines had a significantly 

higher rate of entering apoptosis (2.7 fold) compared to the resistant cell lines. In addition 

the model revealed that when treated with MP, the Molt-4 sensitive cell lines showed a 

significant increase in the rate at which cells entered apoptosis (2.4 fold) compared to its 

control. Also the model suggested that resistant cell lines had a higher rate of 

antimetabolite incorporation (1.4 fold) into the DNA of viable cells. Finally, in contrast to 

the other two cell lines the model showed how the Molt-4 resistant cell line continued to 

cycle after incorporation of MP into their DNA though at a slower rate then its control 

rather then entering apoptosis. This led to a large S-phase block in the Molt-4 but not a 

higher rate of cell death.  

 

The model they used is shown below in figure 1. Untreated cells are assumed to behave 

as a system with 5 compartments G0/G1, S, G2/M, A and N. When treated with MP the 

cell lines are assumed to behave as a system with 3 additional compartments G0/G1I, SI 

and G2/MI. Furthermore, when treated with MP, f in the model represent the fraction of 

cells which continues through cell cycle of untreated cells at least one more time before 

entering apoptosis and conversely 1-f represents the fraction of cells which goes into the 

treated cell cycle.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Panetta’s compartment model over the cell cycle and cell death process 

of untreated and treated cancer cells. The solid arrows connect the compartments 

used to model untreated cell cycle. The solid arrows together with the dashed 

arrows connect the compartments used to model MP treated cells. The 

compartments extension which the dashed arrows connect describes the cell cycle 

of MP incorporated cancer cell. The parameter f represents the fraction of cells 

which continues through the non-treatment effected cell cycle and conversely 1-f 

represents the fraction of cells which goes into the MP incorporated cell cycle.     



9 

 

The authors measured five quantities; total cell count, cell cycle distribution, percent 

viable, percent apoptotic and percent death of three cell lines P12, Molt-4 sensitive and 

Molt-4 resistant. They conducted experiments measuring the five cell quantities every 12, 

24, 48 and 72 hour. Then the model parameters were fitted to the experimental values by 

using the program ADAPT II
2
. ADAPT II is a tool for analyzing pharmacokinetic and 

pharmacodynamic systems developed by Dr. David Z. D'Argenio at the University of 

Southern California. Finally models well fitted to the experimental material 

 

1.2.2.2.1 Relevance of cell cycle modeling 

The value of mathematical cell cycle modeling can be questioned. Could the conclusion 

drawn by Panetta be obtained without cell cycle modeling? The main conclusions 

reached are listed below: 

 

I. MP sensitive cell lines had a significant higher rate of entering apoptosis (2.7 fold) 

compared to resistant cell lines. 

II. MP treated sensitive cell lines showed a significant increase in the rate at which 

cells entered apoptosis compared to control (2.4 fold). 

III. The resistant cell lines had a higher rate of MP incorporation into there DNA. (1.4 

fold). 

IV. Molt-4 continued through cell cycle at a lower rate than its controls after 

incorporation of MP into the DNA witch led to an S-phase block instead of entering 

apoptosis.  

 

The results from the experiment on Molt-4 sensitive cell line presented in figures 3 shows 

that that the fraction of dead cells increases rapidly and the fraction of viable decreases 

rapidly. Between these two stages the apoptotic stage is settling after approximately 12 

hours at a constant level. Furthermore no S-phase halt can be observed. To be able to 

explain the rapid decrease in viable cells and the rapid increase in non-viable cells one 

may be compelled to draw the conclusion that the rate of which cells entering apoptosis 

has increased. Why use a mathematical model to draw conclusions I if it can be reached 

by directly interpret the experimental data? The answer depends on whether the 

knowledge about the magnitude of the decrease is important or not and if it could be 

useful in further studies. It could be important if the goal is to reverse the process, that is 

force the resistant cells to respond as the sensitive cells to treatment. If you assume that it 

is possible to produce a drug which manipulates a certain rate then by knowing the exact 

change of rate between resistant cells and sensitive cells you could introduce a drug 

compensating for the rate difference forcing a resistant cell to become sensitive. 

Conclusion II is in the same way possible to reach based exclusively upon the 

experimental data as conclusion I. The experimental data shows that more Molt-4 

sensitive cells die when MP is added. This implies that the rate cells entering apoptosis 

has increased. As for conclusion I the non-obvious information from models are the 

information about the magnitudes of the relative increases in apoptotic rate.  

 

                                                 

 
2
 American Type Culture Collection, Rockville, MD, USA 
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Conclusion III and IV are more interesting than I and II because they could not been 

drawn without the information from the mathematical model. The amount of cells 

incorporated with MP can not be directly observed. Thus no conclusion about differences 

in rates of MP incorporation between cell lines can be drawn by direct observation. 

Moreover, it is not possible to say anything from the experimental data about whether the 

cell cycle continues after MP incorporation. Conclusion III and IV are therefore non-

trivial conclusions suggested by the mathematical modeling. Furthermore, the 

information about the rate change of MP incorporation is useful if the goal is to 

compensate rate change in resistant cells by adding new drugs.  

 

 
 Figure 2 - P12 cell line: - □ -Control data. - ♦ -MP treated data. The solid line 

represents the model fit to the control data and the dashed line represents the 

model fit to MP-treated data. (A) Total cell counts verses time in hours. (B) Cell 

cycle distribution (that is fraction G0/G1, S, G2/M, respectively). (C) Cell viability 

distribution (that is fraction viable, fraction apoptotic and fraction dead 

respectively. (Panetta et al 2006)     
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Figure 3 - Molt cell line. (A) Molt-4 sensitive cell line and (B) Molt-4 resistant cell 

line: - □ - Control data. - ♦ -MP treated data. The solid line represents the model 

fit to the control data and the dashed line represents the model fit to MP-treated 

data. Panel a: Total count versus time in hours. Panel b: Cell cycle distribution 

(fraction G0/G1, S G2/M, respectively). Panel c: Cell viability (that is fraction of 

viable, fraction of apoptotic, and fraction of dead respectively). (Panetta et al 

2006)       
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The facts about how the cell lines react when incorporated with MP are non trivial 

information obtained from the mathematical modeling are. From the models one finds 

that Molt-4 sensitive and P12 cells continue through one cell cycle but no more after MP 

incorporation and that Molt-4 resistant cells continue through even more cycles. 

Important to remember is that the relevance of such non-trivial conclusions are dependent 

on the reliability of the mathematical model employed. Fore example no information of 

the MP incorporated cell cycle had been obtained if not the occurrence cell cycling after 

incorporation in all cell lines had been assumed. The non trivial results depend on the 

validity of the mathematical model. The validity of the model could be tested using drugs 

targeting certain rates. For example experiments could be performed with a drug 

inhibiting the incorporation of MP. The rate of MP incorporation is then expected to have 

decreased in the model. If it is not true then the model validity could be questioned.        

 

Summary, it is important to think about the usefulness of the information that 

mathematical models can give because otherwise the modeling could become a waste of 

time. Moreover, one should always ask whether the model accurately describes what 

actually happens. Finally the model that Panetta uses differs in some aspects from the 

model used in this work. The presentation of Panetta’s model is intended to illustrate a 

state-of-the-art application of cell cycle modeling as a background to current work in the 

field of cell cycle modeling.    

 

1.2.2.3 Limitations  

1.2.2.3.1 C-Map 

The mRNA microarray data that are stored in the C-Map data base only contain static 

information from a single difference between two time points (the difference in mRNA 

levels between 0 and 6 hours). They do not give any dynamic information about how 

drug induced cells are effected over time. Moreover the microarrays used are expensive 

which limiting to C-Map research. 

 

1.2.2.3.2 Cell cycle modeling      

The experiment using the commercial method flow-cytometry to measure the fraction of 

cells in each cell cycle phase is less expensive than microarrays. The cell cycle modeling 

performed by Panetta et al is scientifically important for understanding of the mechanism 

behind MP-resistance but to a person concerned with the large scale discovery of drugs 

which can overcome resistance it is of limited help. Panetta does not claim that the cell 

cycle model developed can be used to study the effect of other chemotherapeutic drugs 

other than mercaptopurine. The model is created based upon pre-knowledge of how 

mercaptopurine works which limits the applicability of the model. For example the model 

can not be used to identify if apoptosis flows other than S-phase is triggered since only 

the S-phase flow is allowed in the model.     
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1.3 A novel dynamic approach to battle drug resistance  
As already mentioned, the C-Map approach is promising but has the limitations of being 

non dynamic and expensive. It would be beneficial to have a similar approach which is 

dynamic and less expensive. The cell cycle model used by Panetta is dynamic but its 

applicability is limited. What if the applicability of the cell cycle models could be 

extended so that the cell cycle model could be used to characterize all known and 

candidate chemotherapeutic drugs? These models could then be used accordingly to the 

idea of reversed chemical control. For example, cell cycle models could be built which 

characterized selected chemotherapeutic drugs and then stored in a database. The cell 

cycle change between resistant cells and sensitive cells could then be estimated. Finally a 

search could be performed where drugs reversing the identified cell cycle change are 

found. In order to realize the above described the following two points need to be 

accomplished.  

 

I. Build a cell cycle model which can be used to characterize known and unknown 

cell cycle specific chemotherapeutic drugs. 

II. Invent a method which uses the general cell cycle models accordingly to the C-Map 

approach of inverse chemical control in the search of drugs for treatment of 

resistant cancer cells.  

 

1.4 The aim of the thesis 
The aim of this thesis work was to investigate the potential pursuing and implementing 

the novel dynamic approach described in 1.3. More specifically the goals may be 

summarized as: 

 

I. Generalization and simulation of the cell cycle model developed by Panetta et al 

such that it can be used to characterize all known and candidate cell cycle effective 

chemotherapeutic drugs.  

II. Development of artificial (in silico) cancer cell lines defined by parameters in the 

cell cycle model (chapter 3).  

III. Development of artificial drugs that reflects different perturbation of the cell cycle 

parameters (chapter 3). 

IV. Development of “mutated” cell cycle models in which the model parameters have 

been perturbed in such a way that the mutated cell lines become resistant to the 

original treatment (chapter 4). 

V. Evaluate the possibility to perform estimation of the model parameters from time-

series data to define unique cell cycle model “fingerprints” or “signatures” similar 

to those in C-Map database discussed earlier (chapter 2).     

VI. Develop an alternative approach to parameter estimation based on Bayesian model 

selection for defining useful “fingerprints” (chapter 2). 

VII. Perform in silico evaluation of the Bayesian fingerprint approach for combating 

drug resistant cancer cells (chapter 4). 
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2 Theory 

2.1 The cell cycle phase model structure 
The mitotic cell cycle is usually represented by five states G0, G1, S, G2 and M (see 

figure 5) (Weinberg 2007). In the model used here the cell cycle is described by three 

states G0/G1, S and M (see figure 4, 5 and equation (1)). The resting phase G0 and 

separation phase for DNA duplication G1 has been combined into one state G0/G1. The 

majority of the cells in G0/G1 will most likely be G1 phase cells since most cancer cells 

constantly are dividing and therefore never are in the resting phase G0. Furthermore, the 

preparation phase for cell division G2 and the cell division phase M are combined into 

one state G2/M. An important aspect of this representation is that S and M phase are in 

separate states. Most of the known chemotherapeutic drugs (Pang et al 1999) act in either 

S or M phase which makes it important to have a model which can classify between S 

and M specific drugs.  

 

It has been shown that the protein machinery needed for a cell to enter apoptosis is 

present in all phases (Alenzi et al 2004). Thus it is reasonably to assume that apoptosis 

can be triggered in any phase of the cell cycle. The cell cycle model (figure 1) therefore 

has apoptosis flows from all cell cycle states.  

 

The cell cycle model (figure 4, (1)) has four compartments or state-variables G0/G1-

phase (G), S-phase (S), G2/M-phase (M) and apoptosis-phase (A). Furthermore, there are 

seven state-flows, three describing the flows between cell cycle phases pGS (G0/G1→S), 

pSM (S→G2/M) and pMG (G2/M→G0/G1) three describing the apoptosis flows one from 

each cell cycle phase, pGA (G0/G1→A), pSA (S→A) and pMA (G2/M→G0/G) and one 

describing how rapidly apoptosis cells become nonviable pAN A→N.  

 

      
 

 

 

 

 

 

G S 

A 

M 

pSA 

pGS 

pSM 

pMG 

pMA 

pAN 

pGA 

Figure 4 - The cell cycle model has four state-variables, G0/G-phase (G), S-phase 

(S), G2/M-phase (M) and apoptosis (A) and seven state-flows pGS (G0/G1→S), pSM 

(S→G2/M), pMG (G2/M→G0/G1), pGA (G0/G1→A), pSA (S→A), pMA 

(G2/M→G0/G) and pAN (A→N).  
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Four differential equations (1) governs the change of the four state-variables G0/G1-

phase (G), S-phase (S), G2/M-phase (M) and apoptosis (A) over time.  

 

ApMpSpGp
dt

dA

MpMpSp
dt

dM

SpSpGp
dt

dS

GpGpMp
dt

dG

ANMASAGA

MAMGSM

SASMGS

GAGSMG







 2

 

 

2.2 Simulation of noisy trajectories 
Given that the parameters in equation (1) are known then can one perform model 

simulations and generate time series of the cell cycle phase progression of G, S, M and A. 

From this data samples Gt, St, Mt and At can be obtained at different time points t=1…T. 

Vectors of noisy trajectories G
*
, S

*
, M

*
 and A

*
 can then be created by adding for example 

normal distributed errors errGt, errSt, errMt  and errAt to each sampled data point as 

described in equation (2). 

 

ttt

ttt

ttt

ttt

errAAA

errMMM

errSSS

errGGG









*

*

*

*

 

 

Figure 5 - The figure shows how the general 5 phase model representation of the 

cell cycle has been reduced into the 3 phase model representations used in this 

work. The resting phase G0 is combined with the cell duplication preparation 

phase G1 and cell division preparation phase G2 is combined whit the division 

phase M. The arrows represent the apoptosis flows. 
 

(1) 

(2) 
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2.3 Parameter estimation  

2.3.1 Method 

To construct a cell cycle model describing the behavior of drug treated or untreated 

cancer cells we have to estimate the parameters pGS, pSM, pMG, pGA, pSA, pMA and pAN of 

the system of differential equations in (1). The process of parameter estimation procedure 

is illustrated in figure 6. First experiments are conducted (A) in which the number of cells 

in each compartment is sampled at specific time points (B). The experimental data is then 

stored in a computer (C). A computer program is then used to find the model parameters 

which produce the best model fit to the collected data. (D). The best fit will have the 

minimal error between model simulated values and observed values. Finally the best 

result is displayed (E). 

 

 

 
 

 

pSA 

pGS 

pSM 
pMG pMA 

pAN 
pGA 

G0
/G
1 

S 

A 

G2
/M pSA 

pGS 
pSM 

pMG 

pMA 

pAN 
pGA 

D 
 

E 
 

Blue –cells treated without drug 

Green – cells treated with drug 

Measurements 

A 

B 

C 

Figure 6 - An overview of the process of parameter estimation. From experiments 

(A) is time series retrieved (B) which are put into the computer (C). A computer 

program estimates the model parameters (D) and for the parameters resulting in 

the best model fit, the results time profiles are displayed (E).    
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Parameter estimation is commonly done by minimizing an objective function having the 

parameters as variables. The objective function describes the deviation between model 

simulated values and the actual experimental time profiles. (Ljung 1987) The objective 

function used in this work is the total error e(p) presented in equation (3). Experimental 

time series of the state-variables erimenal

tG exp , erimenal

tS exp , erimenal

tM exp  and erimenal

tAexp  t=,…,T  

where T  is the number of sample time points are directly measured in vivo experiments. 

Furthermore simulated time series of the state-variables simulated

tG , simulated

tS , simulated

tM  and 

simulated

tA  t,…,T are calculated given a set of parameters p. For each parameter vector p the 

total error e in equation (3) is calculated from the experimental and the simulated data.  

 

    
T

t

simulated

t
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t

simulated

t
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2exp2exp )()()(  

               2exp2exp )()( pAApMM simulated

t

erimental

t

simulated

t

erimental

t   

 ANMASAGAMGSMGS pppppppp   

 

The objective function can be minimized using the multidimensional nonlinear 

minimization method fminsearch in Matlab (Matlab 2007). Fminsearch is based upon 

Nelder-Meads
3
 nonlinear optimization algorithm also known as the simplex method. The 

method approximately finds a locally minimal solution to a problem with N variables 

when the objective function varies smoothly.  

 

The problem with simplex algorithms like fminsearch is that it often gets stuck in local 

optimal solutions instead of proceeding to the global optimal solution. This can happen if 

the initial parameter guess used is to far from the global optimal solution. There is no 

absolute solution to this problem. One way to increase the probability of finding the 

global optimum is for example to solve the minimization problem for a large number of 

initial parameter guesses and then choose the best solution.   

 

Another way to minimize (3) instead of using the simplex method would be to use a 

genetic algorithm (for example see Goldberg 1989). Genetic algorithms are stochastic 

iterative processes which evolves a population of candidate solutions that is replaced in 

each iteration (generation) by a novel population created by mechanisms inspired by 

genetic inheritance such as chromosomal cross-over and mutations. A genetic algorithm 

was never used since the simplex method worked well on the problem considered in this 

work.  

 

                                                 

 
3
 See Nelder-Mead  http://en.wikipedia.org/wiki/Nelder-Mead_method (2007-03-14). 

(3) 

http://en.wikipedia.org/wiki/Nelder-Mead_method
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2.3.2 Problems with parameter estimation 

For a given application there are two potential problems associated with the parameter 

estimation step: 

 

I. Identifiability, given that we have perfect measurements is there some parameters in 

the model which a priori can not be identified? 

II. Estimability, although all parameters are identifiable can they practically be 

estimated when we have short time series and noisy measurements? 

 

2.3.2.1 Identifiability  

The following definition of identifiability is given by John Jacquez and Peter Greif 

(Jacquez and Grief 1985); given a model of a system and specific input-output 

experiments, with error free data, are all the model parameters uniquely determined? 

Thus, identifiability analysis is concerned with the problem of whether the parameters are 

possible to estimate given an experimental setup. Consequently, if some parameters are 

not identifiable then are they impossible to estimate using the current model and 

experimental setup. Rither more additional quantities have to be measured or the number 

of parameters in the model has to be reduced in order to make all parameters identifiable.  

 

Two kinds of identifiability analysis can be performed; global and a local. Assume that a 

model that can explain a noise free observation y as y=f(p). A  global identifiability 

analysis tells us whether p is uniquely determined by the equation f(p)=y, if p is a set of 

solutions pn n=1,…,N or undetermined having infinitely many solutions. A local 

identifiability analysis only tells us that p either is finitely determined (possible uniquely) 

or undetermined by f(p)=y.(Audoly 1998) There exist methods (Audoly et al 1998, 

Audoly et al 2001) to test for global identifiability in both the linear and the non-linear 

case which involve non-trivial algebraic mathematics. These methods have not been 

implemented due to lack of time. Global identifiability falls outside the scope of this 

thesis.  

 

The method used in this thesis work for local identifiability analysis of linear and 

nonlinear compartments models was developed by John Jacquez and Timothy Perry 

presented first in Endocrinology and metabolism (Jacquez and Perry 1990). The result 

from the identifiability analysis using Jacquez and Perry’s method showed that all of the 

parameters in equation (1) were identifiable. The identifiability analysis was conducted in 

order to confirm whether the cell cycle phase model would prove to be useful or not in 

the applications of interest.  

 

2.3.2.2 Estimability 

It can be difficult to estimate the parameters even if all the parameters are locally 

identifiable. In reality we often have few data sampling points and experimental 

measurement disturbances. Because of this even the correct parameter solution will 

produce an error e (equation 2). For example if a parameter has bad estimability then we 
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will be able to change that parameter significantly and still be within an acceptable error 

range.  

    

Parameter estimation studies of the cell cycle model (1) showed that the estimability of 

the apoptosis model parameters pGA, pSA and pMA are poor. Figure 7, which show six 

good model fits to data with 10 percent disturbance, illustrates the poor estimability of 

the three apoptosis parameters. Figure 8 shows the variety of the apoptosis parameters 

that apparently yield similar time profiles close to the observations. The consequence is 

that the apoptosis parameters can not be determined with any reasonable accuracy.  

 

  

 
 

 

 

 

pMA pAN pSA pGA pMG pSM pGS 

Figure 7 - The six different lines in the graphs represent six different model fits to 

experimental data (the black spots) where each model has its model parameters 

listed in the bottom left table. The experimental disturbance is 10 percent.    
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2.4 Finding alternative drugs for treatment of resistant cancer 
cells 

2.4.1 A general method finding alternative drugs 

This part describes the general idea of how the cell cycle model can be used to find 

alternative drugs for treatment of resistant cancer cells.  

Step 0: (figure 9) Estimate parameters for untreated cell line 

 

Step 1: (figure 9) Estimate parameters for the cell line treated with each of the drugs 

separately. For each drug calculate the induced parameter change by subtracting the 

parameters of untreated cells from the parameters of drug treated cells. This will generate 

a fingerprint consisting of the parameter changes that each drug induces.  

 

Step 2: (figure 10) Store the fingerprints in a database.   

 

Step 3: Estimate model parameters for treated
4
 resistance cancer cells. Then estimate the 

model parameters for treated sensitive cancer cells and calculate the parameter changes 

induced by the resistance mechanism by subtracting the parameters of treated resistant 

cells from the parameters of treated sensitive cells. Figure 11 shows an example where 

the difference between untreated resistant and treated sensitive cancer cells is calculated. 

                                                 

 
4
 Treated with the drug which resistance has been developed against. 

Figure 8 - The figure shows how the 6 good parameter estimates from figure 7 

may vary. Parameter pga, psa, and pma shows great relative variance in between 

estimates which is a sign of bad estimability of these parameters.     
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The changes in parameters represent the effect an ideal drug should have on the resistant 

cancer cells in order to make them respond as sensitive treated cancer cells.      

 

Step 4: Finally search the data base for an alternative drug which induces the desired 

changes calculated in step 3. Hopefully the database contains a drug which can generate 

the desired change (se figure 12).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 - (Step 4) The database is searched for an alternative drug which 

induces the change calculated in step 3 (see figure 8).  
 

Figure 9 - (Step 1) Time series of the cell cycle phase progression of untreated and 

treated cancer cells are measured.  For each drug the changes between the model 

parameters during treatment and the parameters of untreated cells are calculated. 
 

Figure 11 - (Step 3) Parameters are 

estimated based on cell cycle phase 

progression data obtained from treated 

resistant cancer cells and treated 

sensitive cancer cells respectively. 

Finally the parameter changes between 

resistance and treated sensitive cancer 

cells are calculated.  
 

Figure 10 - (Step 2) The parameter 

changes calculated in step 1 is stored in 

a database. 
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2.4.2 Finding alternative drugs using parameter intervals    

Unfortunately, the basic idea described in 2.3.1 can not be directly implemented. This is 

due to the poor estimability of the parameters which the example in 2.2.2.2 illustrated. It 

is not possible to get the unique parameter estimates which are a requirement for success 

of the method. Therefore another way to represent the models and changes has to be 

found.  

 

The models could be represented by parameters intervals where parameters pick within 

the intervals should generate acceptable time profiles that are similar to experimental 

observations. For example assume that the simplified model A in figure 13. Let 
sim

tkky ),( 21  be the simulated value at time point t with parameters k1 and k2 and let obs

ty  

be the observed value at time point t. The intervals I1 and I2 are defined in such a way that 

equation (4) holds when choosing parameters k1 and k2 from within the intervals.    
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I 1 I 2

Interval [0.5 0.7] [1.5 2.3]
 

 

 

 

 

Change between parameter intervals (instead of change between unique parameters as in 

2.4.1) could be calculated by subtracting the corresponding endpoints of two intervals. 

This will be the interval fingerprint representing the cell cycle model change induced by 

a drug. It is illustrated in figure 14 how intervals then can be used according to the basic 

idea described in 2.4.1. First is the change between untreated and treated cancer cells 

calculated by subtracting their corresponding interval endpoints (A). Secondly the 

preferred interval change of the resistant cancer cells is calculated (B) and then finally 

alternative drugs are searched for that induces the same interval change (C).   

 

 

(4) 

Figure 13 - From experimental measurements of treated or untreated resistant and 

sensitive cancer cells we can determine intervals of k1 and k2 such that equation 

(4) holds.  

A B 

k1 

k2 

 

Model A 

+ 
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Cell type Treatment k1 k2 k1 k2

Sensitive none [0.5 0.7] [1.5 2.3] [0] [0]

Sensitive Drug 1 [0.1 0.5] [1 2] [-0.4 -0.2] [-0.5 -0.3]

Sensitive Drug 2 [0.2 0.6] [0.5 1] [-0.2 -0.1] [-1 -1.3]

Sensitive Drug 3 [1 1.6] [0.1 0.7] [0.5 0.9] [-1.4 -1.6]

Interval change

 
 

 

Cell type Treatment k1 k2 k1 k2

X-Resistant Drug X [0.4 0.6] [1.6 2.4] [0] [0]

Sensitive Drug X [0.1 0.5] [0.6 0.9] [-0.3 -0.1] [-1 -1.5]

Interval change

 
 

 

 

 

 

 

2.4.2.1 Problems with intervals  

The interval approach has important limitations. The main problem is that the intervals 

are hard to define and compare. Intervals can be calculated by generating sets of 

parameters consistent with experimental data using for example fminsearch several times. 

The interval of each parameter could then be set to lowest and highest values in each 

calculated parameter set. The problem with this process is that it is time consuming but 

perhaps manageable at least for small models like the one considered here. Another 

fundamental problem is that correlation between parameters is ignored. It is not unlikely 

that only certain combinations of parameters from within the intervals are consistent with 

data. For example, suppose we have the two parameters k1 and k2 and their corresponding 

intervals I1 and I2 as defined in figure 13. Let us assume that the parameter combinations 

k1=0.52 and k2=1.73 and k1=0.67 and k2=2.25 produce time profiles consistent with 

observed data. Further more assume that the parameter combination k1=0.52 and k2=2.24 

does not produce time profiles consistent with observed data. The reason to this is 

parameter correlation. It could actually be the case that there exist two clusters c1 and c2 

as defined in table 1.  Only if we draw k1 and k2 from intervals with in the same clusters 

do we get simulations consistent with data. The problem then becomes to perform 

reversed chemical control using clusters and not only intervals. The cluster approach is 

something not considered any further in this work but it could be fruitful to investigate it 

further.  

 

c1 c2

k1 [0.5 0.55] [0.65 0.7]

k2 [1.7 1.8] [2.2 .23]
 

 Table 1 - Two different intervals c1 and c2 both from which parameters consistent with 

data can be drawn.  

Drug 2 

induces a 

similar 

change.  

A 

B C 

Figure 14 - Reversed chemical control using parameter intervals. (A) First 

estimate the change between treated and untreated cancer cells by subtracting 

their corresponding end points. (B) Estimates the desired change of the resistant 

cancer cells. (C) Search for alternative drugs which induce the same change. 
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Moreover, it is difficult to compare interval fingerprints. For example; how the query 

interval in figure 15 with intervals I1 and I2 be compared? Maybe the query interval is 

more similar to I2 since it is more in the center of that interval or maybe should the query 

interval be considered to be equal similar to both of them? The point is that it is tricky to 

set up criteria for how to compare intervals.     

 

 
 

 

 

 

It is also problematic when the parameters differ in estimability. For example imagine 

that we would have the case described by table 2 were the estimated interval of parameter 

k1 is centralized around the true values and the estimated interval for parameter k2 is 

relatively independent of the true values. Interval k2 could then be considered as less 

informative since it does not give any hint to k2’s real value. The interval of parameter k1, 

which seems more informative, would be the interval to rely upon when comparing 

different fingerprints. Thus it would be hard in a real situation to determine how much 

one should rely upon different parameters and therefore it would become a very 

subjective decision.  

 

k1 k1  true k2 k2 true

[0.5 0.7] 0.6 [0 2] 0.01

[0.01 0.05] 0.02 [0 2.1] 0.1

[2 3] 2.3 [0 1.8] 1

[1 1.6] 1.3 [0 1.9] 1.3
 

  

 

 

In the thesis work reported here the difficulties presented above were not studied any 

further. Instead of pursuing the interval approach an alternative strategy to obtain 

fingerprints based on Bayesian inference was investigated.  

 

2.4.3 Finding alternative drugs using Bayesian probability theory  

The idea of Bayesian probability fingerprints is here illustrated with the following 

example. Assume that we have the simplified cell cycle phase model M presented in 

0 1 

Query interval 

I1 

I2 

Figure 15 - It is difficult to compare intervals. Which one of I1 or I2 is the query 

interval most similar to?      

Table 2 - The k1 interval is more informative than the k2 interval. How should it be 

account for? 
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figure 16. The model has only two cell cycle phases A=G0/G1/S and B=G2/M and two 

flows k1 and k2 and no apoptosis flows.  

 

 
 

 

 

Now, assume that it is only biological reasonable to have values of k1 and k2 within the 

intervals presented in table 4. Then it is reasonable to divide the each of the intervals into 

a number of subintervals. In table 4, they are divided in two subintervals low and high.  

 

Interval

k1
[0.01 1]

k2
[0.1 10]

        

Low High

k1
[0.01 0.1] [0.1 1]

k2
[0.1 1] [1 10]

Subinterval

 
 

 

 

 

Four sub-models M - M1, M2, M3 and M4 (see figure 17) can now be defined based on the 

subinterval. Each model can be said to represent all observations where k1 and k2 are 

limited to a particular set of subintervals.   

 
 

 

 

Suppose now that we can calculate for each of the four sub-models the probability that it 

explains experimental data ydata. The set of probabilities, P(M1),...,P(M4) i=1,…,4 will 

then represent the sub-model probability fingerprint of the experimental data. 

  

A B 
k1 

k2 

    M 

A B A B A B A B 

      M1     M2     M3       M4 

k2 - low 

k1 - low 

k2 - high 

k1 - low 

k2 - low 

k1 - high 

k2 - high 

k1 - high 

Figure 16 - The compartment model M with two state-variables A=G0/G1/S and 

B=G2/M and two state-flows k1 and k2.  
 

Table 3 The biological reasonable 

intervals of k1 and k2. 
 

Table 4 The intervals k1 and k2 divided 

into subintervals low and high. 

 

Figure 17 - Four sub-models defined from the subintervals of k1 and k2.   
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2.4.3.1 Probability assumption 

In this work, it is assumed that the errors errG, errS, errM and errA in equation (2) are a 

normally distributed stochastic variable with a user defined variance σ
2
.  

 

It is important to point out that the noise assumption is a result of a compromise between 

the time available to investigate the matter and the practical usefulness of the assumption 

in application. It would be much more time consuming and complicated to calculate the 

probability fingerprints without this normality assumption. However if the fingerprints 

calculated using the assumption can prove useful when searching for alternative drugs it 

would be an important step forward. 

 

2.4.3.2 Estimating sub-model probabilities  

The probability P(Mi|y) of each sub-model M1,...,MI given an experimental time profile y 

from a cell population has to be determined in order to calculate the probability 

fingerprints. But how are these sub-model probabilities P(Mi|y) i=,1…,N calculated? 

According to Bayes theorem the conditional probability P(Mi|y) can be rewritten as;  

 

 
 

)(

)(

yp

MPMyp
yMP

ii

i   

 

Equation (4) and the probability density function values p(y) and p(y|Mi)  tell us that the 

probability p(Mi|y) can indirectly be calculated through the quantities P(Mi), p(y) and  

p(y|Mi). Since there is no prior knowledge of which model is more probable we have 

P(M1)=,…, =P(MN)=1/N where N is the number of models. Thus, the probabilities P(Mi) 

i=1,..N split the probability space considered into equally probable parts. The probability 

distribution function p(y) according to the law of total probability (Blom 2001) is given 

by;  
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Equation (5) shows that the probability of receiving a measurement y is proportional to a 

sum of the probabilities p(y|Mi) i=1,…,N weighted with P(Mi). P(y|Mi) is the likelihood 

function for the observation when assuming sub-model Mi. This is the challenging 

quantity to calculate in equation (4). It is the essentially the probability that the 

experimental data y has been generated by sub-model Mi. The function p(y|Mi) can be 

estimated numerically given the probability assumption of the errors errG, errS, errM 

and errA in equation (2)  from part 2.4.3.1. Under the assumption, p(y|Mi)can be 

calculated through expression (7) below which follows from basic probability theory.  
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(6) 
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Equation (7) tells us that p(y|Mi) is equal to the integral of the product of p(y|θ,Mi) where 

we integrate over the parameter region Ri of sub-model Mi that defines all possible values 

of the parameter in model Mi. The parameter region Ri is defined by the parameter 

subintervals of sub-model i. Put differently equation (7) tells us that p(y|Mi) is equal to 

the expected average value of the probability p(y|θ,Mi). We need an expression for 

p(y|θ,Mi) in order to evaluate expression (7). Under the assumption given in 2.4.3.1 

p(y|θ,Mi ) is defined as; 
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Here y represents the measured cell cycle phase experimental data and y(θ) denotes the 

model simulated cell cycle phase data. N is the number of sampling time points. In order 

to solve the integral for a sub-model Mi we thus need to evaluate; 
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Evaluation of expression (9) is challenging to solve mathematically due to the many 

parameters the integration is performed across. An approximation can be obtained by 

estimating the expected value   ii MMypE , , equation (7). The expected value can 

be estimated by using the following Monte Carlo
5
 algorithm; 

 

1. Let n=1. 

2. Randomly select a parameter vector θn from the sub-model parameter region Ri of 

Mi. A uniform distribution in the sub-model parameter region Ri of the parameters 

is assumed.  

3. Use the cell cycle model simulator to calculate a trajectory  ny ˆ . 

4. Calculate  
n

yp  using formula (8) where the standard deviation σ is a user 

defined variable that should reflect the variability in the expected measurement 

and model errors.      

5. Let n=n+1. 

6. Repeat 2-5 until the sum     ii

N

n nM MMypEyp
N

S
i

,
1

1
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converges. 

 

Remember from above that we had P(M1)=,…, =P(MN)=1/N where N is the number of 

models. This fact together with equation (6) makes it possible to rewrite equation (5) as; 

 

                                                 

 
5
 For more information about the Monte Carlo method go to 

http://en.wikipedia.org/wiki/Monte_Carlo_method 

(8) 

(9) 
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The probability p(Mi|y) can now be calculated through expression (10). Once again, 

consider the example the model in figure 16. Using (10) we can numerically approximate 

p(M1|y), p(M2|y), p(M3|y) and p(M4|y). In the next part it is shown how the calculated 

probabilities can be used to find alternative drugs for treatment of resistance cancer cells.  

 

2.4.3.3 Probability matrices 

Let y1 be experimental data from untreated sensitive cancer cells and let y2 be 

experimental data from the same sensitive cancer cells treated with drug d. We can then 

calculate the probabilities p(M1|y1), p(M2| y1), p(M3| y1),  p(M4|y1) andd p(M1|y2), p(M2| 

y2), p(M3| y2),  p(M4| y2) through formula (10). The effect of the drug will then be 

characterized by a matrix containing all possible sub-model probability changes between 

untreated and treaded cancer cells. For example, the probability that sub-model Mi 

explained the untreated data y1 and that sub-model Mj explained data y2 can be calculated 

using equation (11).   
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The last evaluation in equation (11) is possible since model Mi is independent of Mj and 

y2 and model Mj is independent of y1. Equation (11) says that the probability for the event 

of going from sub-model Mi to sub-model Mj, given that the experimental data has 

change from untreated experimental data y1 to drug treated experimental data y2, is equal 

to the product of probability of the separate events p(Mi|y1) and  p(Mj|y2). Thus it is 

assumed that the event having model Mi when observing y1 and the event having model 

Mj when observing y2 are independent of each other. The probability changes calculated 

from (11) for Mi i=1,…,N and Mj j=1,…,N where N is the number of models will be 

defined as the probability fingerprint which is the probabilities of all possible sub-model 

changes that a drug induces.     

 

As an example, imagine that we have got the probabilities presented in table 5. 

 
Cell type Treatment P(M1|y) P(M2|y) P(M3|y) P(M4|y)

Sensitive none 0.10 0.30 0.10 0.50

Sensitive Drug 1 0.23 0.40 0.10 0.17
 

 

 

 

 

A matrix  P with the probability jumps can be calculated where for example p12= 

P(M1,M2|yuntreated,ydrug1)=0.10*0.40=0.04 represents the probability that experimental data 

Table 5 - The probability results calculated from experimental data of untreated 

sensitive cells and sensitive cells treated with drug 1.  
 

(11) 

(10) 
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first were explained by model M1 and then after drug treatment were explained by model 

M2. This generates the probability matrix of model transitions and is illustrated in table 6.  

 

p11 p21 p31 p41

p12 p22 p32 p42

p13 p23 p33 p43

p14 p24 p34 p44  
 

 

 

2.4.3.4 Discrete subinterval change  

Assume that the two compartment model from section 2.4.3 has three subintervals low, 

medium and high for each parameter. Let model Mi represent the subinterval combination 

[Medium Low], model Mj [Medium Medium], model Mk [High Medium] and model Ml 

[High High]. Going from Mi to Mj can be represented by the vector [0 +1] meaning that 

parameter 2 has changed plus one subinterval from low to medium. Similar going from 

Mk to Ml can also be represented as the change [0 +1] were parameter 2 has changed from 

medium to high. By adding the probabilities P(Mi→Mj) and P(Mk→Ml) the probability of 

the change [0 +1] can be calculated. Conversely going from Mj to Mi and from Mk to Ml 

will be interpreted as the change [0 -1] and by adding the probabilities P(Mj→Mi) and 

P(Mk→Ml) the probability for the change [0 -1] is calculated. Generally let ck be a vector 

1xN where N is the number of parameters in the model defining a particular subinterval 

change k and assume that there are K possible unique changes. For example if the 

parameters can take 3 values there are 5 possible changes; -2, -1, 0, 1, and 2. If there are 

two parameters then there are 5
2
=25 unique changes ck. The probability P(ck| y1→y2) of a 

parameter subinterval change ck can be calculated in the following way. 
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Where S is the set with index pairs i,j representing model changes Mi→Mj which stand 

for same discrete subinterval change. P(ck| y1→y2) can then be calculated for all 

k=1,…,K. This will results in a k-dimensional vector ρ with probabilities for all the 

possible subinterval changes.  

 

2.4.3.5 Probability of alternative drugs 

Assume that there are only three alternative drugs a1, a2 and a3. A sensitive cell line is 

treated with each drug separately and a time series is collected from each treatment. For 

each drug ai, a probability vector ρ
ai

 can be calculated which contains the probabilities 

P(ck| y0→yi) k=1,…,K were y0 is trajectory from untreated sensitive cells and yi is 

trajectory from drug ai treated sensitive cells. Moreover assume that a resistant cell line 

has evolved from the sensitive cell. Assume that the cell line is resistant to a drug x. It is 

desirable to identify drugs which have the highest probability to reverse the resistance. 

Table 6 The probability matrix P where pij describes the probability 

p(Mi→Mj|yuntreated→ydrug1). 
 

 

p12=P(M1M2|yuntreatedydrug1) 

 

(12) 
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This can be calculated by first collecting time series from sensitive and resistant cell line 

treated with drug x. Assume that these trajectories can be denoted yr and ys respectively. 

the collected trajectories of sensitive cells can then be obtained. Then the corresponding 

probability vector ρ* for yr= y0 and ys=yi can be calculated. The probability that 

alternative drug ai reverses the resistance can then be calculated in the following way.  

 

P(ai orsakar önskad förändring yr –ys| observerad förän 
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The probability P(ck| yr→ys) equals ρ*k. P(ai|ck) can be rewritten using Bayes theorem;. 
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The drug probabilities P(ai) are assumed to be equal for all drugs. This means that P(ai) 

will be canceled out in equation (14). The probability P(ck|ai) equals ρ
ai

k. It is then 

straightforward to calculated P(ai|ck).  

 

2.4.3.6 Alternative drug search – summing up  

Below is a stepwise description of the method used to find alternative drugs for treatment 

of resistance cancer cells. 

  

Step 1: Calculate the probability matrix for each drug i which represents the drug induced 

change in sensitive cancer cells. Then calculate the probability vectors ρ
ai

 i=1,…,I with 

probabilities for the discrete subinterval changes using (12).  

 

Step 2: Store the results in a database.  

 

Step3: Calculate the probability matrix for the change between treated resistant cells and 

treated sensitive cells which represents the change an ideal drug induce in the resistant 

cancer cells. Then calculate the probability vector ρ* with probabilities for discrete 

subinterval changes. 

 

Step 4: Rank the alternative drugs accordingly to their probability P(ai |yr→ys) of 

reversing the resistance. The one or those with the highest probability will then be 

considered as the best alternative drug.  

 

 

 

(13) 

(14) 
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3 In silico experimental setup  

3.1 Experiments 
In the simulated experiments performed the state-variables G0/G1, M, G2/S and A are 

measured at 10 uniformly spread time points over a period of 72 hours. The cell cycle 

time is measured if it turns out to be shorter than 72 hours. Cell cycle trajectories were 

generated by sampling from simulation and then adding 10 percent measurement 

disturbance in order to reflect a realistic case. Notably 10 percent measurement 

disturbance could be an underestimation. However the results from Panetta et al indicated 

that 10 percent measurement disturbance is a realistic assumption (Panetta et al 2006).  

 

In a real wet experiment the cell cycle progression over time can be measured for 

example by Arrayscan™ or flow cytometry. Flow cytometry was the method used by 

Panetta (Panetta et al 2006) to collect data.  

 

3.2 In silico sensitive cell line and substances  

3.2.1 Cell line 

One sensitive in silico cell line was created. The cell line is represented by the model 

parameters shown in table 9. Panetta’s (Panetta 2006) estimated cell lines parameter was 

used as a guidance to set realistic parameter values. Parameter pGS, pSM and pMG are cell 

cycle parameters representing the cell transition rate between cell cycles. The rate 

between G (G0/G1) and S phase is of the same magnitude as the rate between S and M 

(G2/M) phase. The mitosis rate between M and G phase is 3 times faster. As a 

consequence the cancer cells generally stay shorter time in M phase than in G and S 

phase. Parameter pGA, pSA and pMA are apoptosis parameter representing the apoptosis 

rate from respective G, S and M phase. The choice of apoptosis parameters should 

depend upon pre-known facts about the cell. Here no pre-known facts were used hence 

the apoptosis flow was considered to be of equal magnitude. Models where one or two 

apoptosis parameters play greater rolls could also be created. Parameter pAN is the flow 

with which apoptosis cells becomes non-viable. The simulated cell cycle response of the 

cell line is presented in figure 18. The figure shows that part of cells in each phase is 

stabilized on a constant level and that the cell growth is exponential. The start values of 

cells in each phase are in the beginning in dynamic steady state proportions.  

 

pGS pSM pMG pGA pSA pMA pAN 

0,15 0,12 0,33 0,011 0,009 0,012 0,15  

Table 7 - The table shows the parameter values of the resistant cell lines.   
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3.2.2 Substances 

20 different in silico substances were created. The effect of one substance was modeled 

as a multiplication of the substances parameters with the corresponding cell line 

parameters. The parameter changes for each of the substances are presented in table 8. 

The substances can be divided into three categories based upon their effect on cell 

growth. Substances 1-3, 7-8 and 13-15 decrease the cell growth in such magnitudes that 

there are fewer cells after 72 hours incubation than in the beginning (A the figure 19). 

Substances 4-6, 10-12 16-18 also decrease the cell growth of  cell line 1 but there are still 

more cells after 72 hours incubation that in the beginning (B in figure 19). Finally 

substances 19-20 increase the cell growth (C in figure 19).  

 

 

Figure 18 - The three top graphs show the relative distribution of cell line cells in 

G (G0/G1), S and M (G2/M) phases over time of. The bottom left graph show the 

fraction of cells in apoptosis over time out of total cell count of cell line 1 and the 

bottom right graph shows the total cell count. 
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pGS pSM pMG pGA pSA pMA pAN 

1 1 1 1 15 1 1 1

2 1 1 1 1 15 1 1

3 1 1 1 1 1 25 1

4 1 1 1 4 1 1 1

5 1 1 1 1 4 1 1

6 1 1 1 1 1 5 1

7 0,01 1 1 1 1 1 1

8 1 0,01 1 1 1 1 1

9 1 1 0,01 1 1 1 1

10 0,1 1 1 1 1 1 1

11 1 0,1 1 1 1 1 1

12 1 1 0,1 1 1 1 1

13 0,1 1 1 4 1 1 1

14 1 0,1 1 1 4 1 1

15 1 1 0,1 1 1 5 1

16 0,1 5 1 1 1 1 1

17 1 0,1 5 1 1 1 1

18 1 5 0,1 1 1 1 1

19 1 5 1 1 1 1 1

20 1 1 5 1 1 1 1  
 

    
Table 8 - The table shows the parameter effect of each substances one the cell line 

parameters. 
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Figure 19 - Arrow (A) points to substances 1-3, 7-8 and 13-15 which decrease the 

cell growth in such magnitude that there are fewer cells after 72 hours incubation 

than in the beginning. Arrow (B) points to substances 4-6, 10-12 16-18 which also 

decrease the cell growth of cell line 1 (gray dotted line) but there are still more 

cells after 72 hours incubation that in the beginning. Finally arrow (C) points to 

substances 19-20 which increase the cell growth. Due to lack of resolution graph 

of substance 4 can not be spotted. It lies extremely close to the graph of substance 

5.    
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4 Results 

4.1 Setup 

4.1.1 Subintervals 

The parameters pGS, pSM, pMG, pGA, pSA, pMA and pAN were divided into intervals (table 9). 

The endpoints of the intervals were thought to represent extreme scenarios. The low 

endpoints were considered to represent very slow flows between state-variables and the 

high endpoints were considered to represent very fast flows. Values outside these 

intervals were seen as biologically unrealistic values. It was assumed that the time for a 

cell to go from cell cycle phases G to S and S to M was at minimum 1 hour/cell and at 

maximum 20000 hours/cell. The minimum time for a cell to go from M to G was 

assumed to be 0.5 hour/cell and the maximum time was assumed to be 13333 hours/cell. 

The minimum time for a cell to go into apoptosis was assumed to be 20 hours/cell and the 

maximum time was assumed to be 20000 hours/cell. Finally the minimum time for a cell 

to go from A to N was assumed to be 5 hour/cell and the maximum time 10 hour/cell. 

From these assumptions were intervals defined for each of the parameters  

 

The intervals of parameter pGS, pSM, pMG, pGA, pSA and pMA were further divided into 

three subintervals (table 10). The subintervals were created based knowledge of the 

estimability of the sensitive cell lines model parameters. Certain parameter combinations 

of pGS, pMS and pMG drawn from within the mid subintervals together with certain 

parameter combinations of pGA, pSA and pMA drawn from the low and mid interval 

generate models consistent with data. Figure 7 and 8 of part 2.3.2.2 shows this. In figure 

8 six good model fits are plotted. It can be seen in figure 7 how the parameters varies 

between the fits. For each cell cycle parameter a single interval including both the highest 

and lowest value of each parameter is defined. The apoptosis parameters show a greater 

relative variability and therefore their values were split into two intervals. Here, another 

approach was implemented. It can be observed in figure 8 that the each parameter either 

are close to zero or in the interval [0.005 0.015].  For example pGA and pMG is in one fit 

high but pSM is low. The low-subinterval was defined as going from 0.0005 to 0.005 and 

the mid-subinterval was defined as going from 0.005 to 0.02. The variance σ
2
 in formula 

(8) was set to equal one when calculating the sub-model probabilities using formula (11).  

 

The only parameter not divided into any subintervals was parameter pAN. This eliminated 

the possibility to separate drugs based on how they parameter pAN. The benefit of doing 

so is a three fold reduction in the number of sub-models to evaluate which leads to a three 

fold reduction of the computational time. The evaluation of the 3^6=729 sub-models of 

each substance took approximately three to four hours using four parallel working 2.9 

gigahertz Intel Pentium processors. Consequently the complete calculation for all 

substances plus the cell line was 3*21=63 hours, approximately two and a half day.  
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Interval

pGS [0.0005 1]

pSM [0.0005 1]

pMG [0.00075 2]

pGA [0.0005 0.5]

pSA [0.0005 0.5]

pMA [0.0005 0.5]

pAN [0.1 0.2]
         

Low Medium High

pGS
[0.0005 0.1] [0.1 0.25] [0.25 1]

pSM
[0.0005 0.1] [0.1 0.25] [0.25 1]

pMG
[0.0008 0.2] [0.2 0.4] [0.4 2]

pGA
[0.0005 0.005] [0.005 0.02] [0.02 0.5]

pSA
[0.0005 0.005] [0.005 0.02] [0.02 0.5]

pMA
[0.0005 0.005] [0.005 0.02] [0.02 0.5]

pAN

Subinterval

[0.1 0.2]
 

 

 

 

 

 

4.2 Example 1 
Substance 1 (marked by green in table 11) is considered to be the drug x which resistance 

has been developed against. The parameters of drug x treated sensitive cells therefore 

equal to those of the untreated sensitive cell line but with parameter pGA increased 15 

fold. The drug works by triggering the apoptosis when the cell is in G-phase. The cell 

cycle response of treated resistant cells is represented by substance 4 (marked by red in 

table 11). It is assumed that the resistant cell line has developed a mechanism which 

makes it less sensitive to the change drug x induced change of parameter pGA. It could be 

case that the resistant cell has developed pumps specialized in pumping out drug x from 

the cell. Parameters pGA is in the resistant cell line only increased 4 fold by the drug x 

which is compared to the 15 fold increase it induces in the sensitive cell line. All the 

substances of table 8 were included in the database. This means that substances 1 and 4 

also play the role of being substances which could be identified as alternative drugs.  

 

The result of ranking the substances accordingly to the probability calculated as in part 

2.4.3.5 is presented in table 12. Substance 1 received the highest probability close 

followed by substance 4. Drug 6, 5, 2 and 3 then comes closely behind. They are all 

within 75 percent of the probability of the top ranked substance. Then there is a jump 

down to substance 20 which is within 57 percent of the top ranked substance, almost half 

as probable as the top ranked drug.  Then is it a relative big drop in probability to the next 

substance which only is within 35 percent of the top ranked substance. Thus, the method 

has singled out substances 1, 4, 6, 2, 3 and possible 20 as more or less equally potential 

substances which could be used to reverse the resistance. They have an accumulated 

probability of 12+12+11+11+9+7=61 percent. Considering the coarse models and limited 

data involved these substances should be considered to be equally good candidates. The 

induced cell cycle response for each substance on the resistant cell line has been plotted 

in figure 20. Drug 1, 2, 3, 5 and 6 all decreased the cell growth of the resistant cell line. 

Table 10 - The subinterval for the 

parameters of the cell cycle phase 

model. 

Table 9 - The parameter intervals that 

are considered to be biological 

reasonable for each parameter. 
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Drug 1 and 4 does it by increasing the apoptosis rate from phase G where drug x 

triggered apoptosis. Drug 2, 3, 5 and 6 increases the apoptosis flow from a different phase 

than drug x does. It shows that it is possible to identify alternative drugs which targets the 

apoptosis mechanism in another cell cycle phase than the one drug x acts in. Substance 20 

increases the cell growth and would therefore be useless as an alternative drug. As the 

figure show, the top ranked drugs induce cell cycle responses in the resistant drug x 

treated cells which are similar to the response of drug x treated sensitive cells. The drugs 

found could for example be triggering alternative pathways which makes the resistant cell 

line sensitive to drug x again. 

 

Summary, the method has singled out the useful drugs among a group of candidates. A 

useful drug has the quality to both reduce the cell growth of the resistant cells and change 

drug x treated resistant cells cell cycle pattern in such way that the pattern imitates that of 

treated drug x sensitive cells. A lesson learned is that substances triggering apoptosis 

within other phases than drug x could be used as alternative drugs. No credible ranking 

within the treatment effective drugs could be obtained. A reason could be the coarse 

nature of the cell cycle model, measurement noise and the limitation of available data on 

cell cycle time series.     

 

pGS pSM pMG pGA pSA pMA pAN 

1 1 1 1 15 1 1 1

2 1 1 1 1 15 1 1

3 1 1 1 1 1 25 1

4 1 1 1 4 1 1 1

5 1 1 1 1 4 1 1

6 1 1 1 1 1 5 1

7 0,01 1 1 1 1 1 1

8 1 0,01 1 1 1 1 1

9 1 1 0,01 1 1 1 1

10 0,1 1 1 1 1 1 1

11 1 0,1 1 1 1 1 1

12 1 1 0,1 1 1 1 1

13 0,1 1 1 4 1 1 1

14 1 0,1 1 1 4 1 1

15 1 1 0,1 1 1 5 1

16 0,1 5 1 1 1 1 1

17 1 0,1 5 1 1 1 1

18 1 5 0,1 1 1 1 1

19 1 5 1 1 1 1 1

20 1 1 5 1 1 1 1          

prob drug id

0.1221 1

0.1154 4

0.109 6

0.1074 5

0.0974 2

0.0949 3

0.0704 20

0.0429 12

0.0405 9

0.0355 15

0.0219 8

0.0213 11

0.0204 13

0.0192 14

0.0136 19

0.0129 17

0.0126 7

0.0115 10

0.0093 16

0.0079 18  
 

 

 

 

 

Table 11 - The table shows the in silico 

created substances. The parameters 

perturbation of treated resistant cells 

marked by red and the parameters 

perturbation of treated sensitive 

marked by green.   

Table 12 - The table shows the results 

from the alternative drugs search.  The 

substances are ranked after the 

probability it has to change the 

resistant cell in the preferred way. 
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Figure 20 - The figure shows the plot of the substances listed in the legend in the 

right lower corner. It is the top ranked substances which the method has singled 

out.     
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4.3 Example 2 
In this second example substance 13 (green in table 13) is considered to be the drug xx 

which resistance has been developed against. The parameters of treated sensitive cells are 

therefore equal to the cell line parameters of untreated sensitive cell line but with two 

changes where parameter pGS has been decreased 10 fold and parameter pGA has been 

increased 4 fold. Thus, in this care the drug of interest works by both lowering the 

transition rate between G and S phase and by triggering the apoptosis rate in G-phase. 

The cell cycle response of treated resistant cells is represented by substance 4 (red in 

table 13). It is assumed that the resistant cell line has developed a mechanism which 

makes it less sensitive to the change parameter pGS induces (compare substance 4 and 

13). It could be that the resistant cell has developed an inhibitor such that the drug no 

longer can lower the cell cycle rate between G and S.  As in example 1 all the substances 

of table 8 are included into the database. This means that substances 13 and 4 also play 

the role of being possible drug candidates for treatment. 

 

The result of ranking the substances is presented in table 14. Substance 13 received the 

highest probability. Substance 7 and substance 10 follows and are both within 70 percent 

of the top ranked substance. Then is it a relative big drop in probability to the next 

substance which is only within 31 percent of the top ranked substance. The method has 

singled out substances 13, 7 and 10 which have an accumulated probability of 

26+19+18=63 percent. The induced cell cycle response of each of these three substances 

on the resistant cell line has been plotted in figure 21. The plot of cell growth in the 

figure shows that all three substances decrease the growth of the resistant cell line. Drug 

13 decreases the transition rate between G and S phase and increases the apoptosis rate 

from G phase. The substance has the same effect as drug xx. It could work by effecting 

alternative pathway than drug xx which gives triggers the same cell cycle response as 

drug xx induces. Drug 7 and 10 both decreases the transition rate between G and S phase. 

Drug 7 does it 10 fold more than drug 10. Both drugs might work by triggering another 

pathway than drug xx. Commonly for all three substances is that they decreases the G to 

S transition rate. The result implies that such a property is crucial for an alternative drug 

to overcome drug xx resistance. As the figure show, the top ranked substances induces a 

cell cycle response of the resistant drug xx treated cells similar to the one of drug xx 

treated sensitive cells.   

 

Summary, as in example 1 the method has singled out useful drugs among a group of 

candidates. From the example can be learned that is appears as a reduction of the 

transition rate between G and S phase is a crucial property for an alternative drug. No 

credible ranking within the treatment effective drugs could be obtained. A reason could 

be the coarse nature of the cell cycle model, measurement noise and the limitation of 

available data on cell cycle time series.     
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pGS pSM pMG pGA pSA pMA pAN 

1 1 1 1 15 1 1 1

2 1 1 1 1 15 1 1

3 1 1 1 1 1 25 1

4 1 1 1 4 1 1 1

5 1 1 1 1 4 1 1

6 1 1 1 1 1 5 1

7 0,01 1 1 1 1 1 1

8 1 0,01 1 1 1 1 1

9 1 1 0,01 1 1 1 1

10 0,1 1 1 1 1 1 1

11 1 0,1 1 1 1 1 1

12 1 1 0,1 1 1 1 1

13 0,1 1 1 4 1 1 1

14 1 0,1 1 1 4 1 1

15 1 1 0,1 1 1 5 1

16 0,1 5 1 1 1 1 1

17 1 0,1 5 1 1 1 1

18 1 5 0,1 1 1 1 1

19 1 5 1 1 1 1 1

20 1 1 5 1 1 1 1          

prob drug id

0.2562 13

0.1888 7

0.1788 10

0.0822 17

0.0535 14

0.0515 20

0.0358 2

0.0259 3

0.025 16

0.0207 5

0.017 6

0.0153 4

0.0141 11

0.0131 1

0.0125 8

0.0044 19

0.0006 15

0 12

0 9

0 18  
 

 

 

 

 

 

 

 

 

Table 13 The table shows the results 

from the alternative drugs search.  In 

the right table are the parameters 

perturbation of treated resistant cells 

marked by red and the parameters 

perturbation of treated sensitive 

marked by green.  

Table 14 - The table shows the results 

from the alternative drugs search.  The 

substances are ranked the after 

probability to make the resistant cells 

sensitive again. 
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4.4 Summary of the results  
Example 1 and 2 illustrated how the method presented in part 2.3 works. The examples 

show that the method successfully can single out substance that has the potential to 

reverse resistance from a library with cell cycle phase data of different substances.  

 

 

Figure 21 - The figure shows the plot of the substances listed in the legend in the 

right lower corner. It is the top ranked substances which the method has singled 

out.     
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5 Discussion 

5.1 Model relevance 
The result presented in chapter 4 is promising. Given that the reality exhibits the same 

behavior as assumed in chapter 3 then is it know that the method using cell cycle model 

(1) performs well. But what if the model does not describe the reality sufficiently? This 

leads to bad performance of the method for alternative drug search. Here two important 

model assumptions are addressed.  

 

5.1.1 Delay of maximum drug effect 

The model used in this work does not capture the event of drug effect time delay. It is 

assumed that the drug starts to change the cell cycle instantly at a constant rate during 

treatment. This is probably not what happens in reality. There is most likely a period 

before the drug reaches its maximum effect, a period under which the cancer cells 

absorbs and distributes the drug. The maximum effect is not reached until there is a 

thermodynamic equilibrium of the drug concentration in the cell. To what extent the time 

delay undermines the explanatory power of the model should depend on the length of the 

time delay. In the following, one possible extension of model (1) in which models the 

time delay is considered.  

 

Time delay of the drug effect can be incorporated in model (1) by changing the drug 

target parameter/parameters as in (13). At t=0 is pXX=pXXuntreated and at t>>pXXdelay is 

pXX≈pXXtreated. The time delay parameter pXXdelay determines how fast the influence of the 

pXXuntreated parameter is decreased and consequently how fast the influence of pXXuntreated is 

increased. The function gives rise to an hyperbole-formed curved. For example with 

pXXdelay=10, pXXuntreated=0.05, pXXtreated=0.1 and t=[0 100] the following graph is obtained 

(figure 22).     
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(15) 

Figure 22 - The figure shows the function pXX(t)=(10*0.05+0.1*t)/(10+t). It 

illustrates how the function at the beginning assumes values 0.05 and then 

increases in 10 hours to 0.75. As the time goes to infinity the function equals 0.1.   
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The model has at minimum 6(pGSuntreated,…,pMAuntreated)+2(new)+1(pAN) parameters and at 

maximum 6+12+1 depending upon the number of parameters affected by the drug. Six of 

the parameters (pGSuntreated, pSMuntreated, pMGuntreated, pGAuntreated, pSAuntreated and pMAuntreated) 

should be known from previous experiments on untreated cancer cells. For each of the 

drug affected model parameters pXX, two new parameters pXXdelay and pXXdrugchange are 

introduced. This results in 3-13 unknown parameters. When estimating the parameters of 

the extended model all 13 parameters have to be estimated since no pre-knowledge of 

what parameters the drug targets are known. For the parameters pXX that are left 

unaffected by the drug we should have pXXdrugchange=0 so that pXXtreated=pXXuntreated.  

 

Now, if the time delay pXXdelay is small then after a short period of time pXXdelay will be 

much smaller than t and pXXuntreatedpXXdelay will be much smaller that tpXXtreated. Thus the 

influence of the untreated parameters will become insignificant such that pXX equals the 

constant values of pXXtreated. Thus if the time delay is short then the time delay model (15) 

can be approximated by model (1). But as the time delay grows lager the more significant 

the time delay becomes. It then would be preferable to used model (15) to accurately 

capture reality. However a major problem with model (15) is that it has 13 unknown 

parameters instead of the 7 of model (1). This will lead to even more severe estimability 

problems.  

  

Another approach would be to directly estimate the time delay of each drug parameters 

pXXdelay based on for example drug absorption studies and/or studies of the penetrability 

of the drug active molecule/molecules. Such an approach would reduce the unknown 

parameters of the drug delay model (15) from 13 to the 7, the same number of parameters 

that model (1) has.    

 

In summary; no model of the time delay is used in this work. A proposal for future 

studies would be to further investigate the potential of such an extension.  

 

 5.1.2 Error model 

In the current approach presented in this thesis, a simple Gaussian error model is assumed 

(part 2.4.3.1). This error model was chosen mainly for practical reasons and should be 

realistic as long as the deviation between the observed and simulated time profiles is 

small. Additional experimental and theoretical work is needed to validate this 

assumption.  

 

Another error model could be used. Instead of Gaussian error model a simpler model 

could be implemented as follows. First define a cutoff value of the total error e (equation 

3). For each sub-model, draw parameters from within the subintervals of the sub-model. 

Perform model simulations with the parameters and then calculate the total error e. If the 

total error is below the cut off value then add one to the sub-model score parameter s 

formula below (16). The procedure is repeated for each sub-model until the score 

parameter s has converged. The score parameter s then equals the probability that sub-

model Mi is e from data. The index m runs over the number of times the total error e is 

below the cut of value and the index n runs over the number of repetitions.     
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5.2 In vitro applicability 
The in vitro applicability of the method developed in this thesis work depends upon a 

number of things. 

 

I. Descriptive power of the model; how well the cell cycle model describes reality   

II. Experimental accuracy, how accurately and how many samples of the cell cycle 

progression that has to be measured. 

III. Financial burden; is cell cycle experiments financially realistic?    

 

All these three points has to be considered when deciding whether to go further with in 

vitro studies. The work of Panetta’s suggested that a non-time delay model can 

successfully be used. They also prove that experimental accuracy is achievable. The 

financial aspect of cell cycle experiments is promising since cell cycle experiments is 

much less expensive and time consuming than micro-array experiments.    

 

5.3 Suggestion for future work  

5.3.1 In silico substance library 

The in silico substance library could be extended. For example, the library could be 

generates by an algorithm which perturbed the model parameters in a randomized way. 

Each parameter perturbation is saved and stored as an alternative substance. 

     

5.3.2 Covering different alternative drugs search  

Moreover, the results presented in chapter 4 shows that drugs in the current library can be 

used to find alternative drugs which can change treated resistant cancer cells to behave as 

treated sensitive cancer cells. Other types of changes can be calculated depending upon 

whether you have measurements of treated or untreated resistant cells and treated or 

untreated sensitive cells. Using measurements of untreated and treated resistant cells and 

of untreated and treated sensitive cells is it possible to calculate four different types of 

changes;  

 

(16) 

(17) 
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I. Between untreated resistant and untreated sensitive cancer cells  

II. Between untreated resistant and treated sensitive cancer cells 

III. Between treated
6
 resistant and untreated sensitive cancer cells 

IV. Between treated resistant and treated sensitive cancer cells  

 

It makes sense to calculate change between untreated resistant and untreated sensitive 

cancer cells (I), between untreated resistant and treated sensitive cancer cells (II) and 

between treated resistant and treated sensitive cancer cells (IV) but not to calculate the 

change between treated resistant and untreated sensitive cancer cells (III). Searching for a 

drug which turns untreated resistant into treated sensitive cancer cells (II) will directly 

kill the resistant cancer cells and such a drug is probably an analog to the drug which 

resistance has been developed against. A drug which changes untreated resistant to 

sensitive untreated cancer cells (I) preferable inverts the resistant mechanism and 

hopefully makes the resistant cancer cells sensitive to treatment again. Although, one can 

not be sure that such a drug will work in combination with the drug resistance has been 

developed against. It could be the case that the alternative drug simply changes the 

resistant cancer cells without blocking the resistance mechanism. Finally a drug which 

changes treated resistant to treated sensitive (IV) is a drug which makes the resistant cell 

sensitive again. In a combination treatment together with the drug resistance have been 

developed against should such a drug work. Alternative drugs found from searching in 

any of the three ways I, II or IV either directly kill the resistant cancer cell (I) or kill them 

in a combination treatment with the drug resistance has been developed against. A drug 

which changes treated resistant to untreated sensitive cancer cells (III) will be useless 

since such drugs neither has the potential to alone kill the resistant cancer cells or to do so 

in combination with the drug resistance has been developed against.  

 

The method developed in this paper can be used to find drugs which change the resistant 

cancer cells in any of the three ways I, II and IV. In this work the type III change is 

searched for, the same type of change that Lamb et al looked to perform reversed 

chemical control using their C-Map of mRNA expression data.(Lamb et al 2006) One can 

never be certain in reality if you are going to find drugs which induce the specific change 

searched for. It might therefore be preferred in an in vitro study to search for alternative 

drugs which can change the resistant cancer cells in either one of the three ways I, II and 

IV.  

 

5.3.3 Subintervals  

The subintervals in part 4.1.1 were defined based on estimability information of the 

sensitive cell lines parameters. The purpose of defining the subintervals in this way was 

to make it is easier to observe drug induced change in sensitive cells. If the mid-

subintervals for the cell cycle parameters together with the low or mid-subintervals of the 

apoptosis parameters are the most probable sub-model describing sensitive cell line then 

a drug induced change decreased or increased in a parameter should be easiest to observe. 

                                                 

 
6
 By saying treated resistant cancer cell is it refereed to treatment with the drug which the resistance has 

been developed against. 
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It is preferable that the mid-subintervals are as close as possible to the parameter set 

consistent with collected time series of the sensitive cell line in order for the slightest 

parameters change to be observed. If the subintervals are badly defined such that induced 

parameter changes does not show as sub-model change. Estimability study of the 

sensitive cell line is therefore important. Defining the subintervals in a correct way is 

essential to how well the alternative drug search method perform.  

 

It is preferable to define subintervals specific to the treated resistant cell line. Remember 

that changes between treated resistant and treated sensitive cancer cells are used in the 

alternative drug search. The mid-subintervals should be tuned to treated resistant cells in 

such a way that the slightest parameter change of the resistant cells parameters can be 

observed. Such tuning will maximize the likelihood of observing the change between 

resistant and sensitive cancer cells parameters. Consequently, different subintervals 

compared to those used when estimating the induced change substances has on the 

sensitive cell line should be used when identifying the change between treated resistant 

and treated sensitive cancer cells.  

 

5.3.4 Drug classification 

The collected time series of drug induced cell cycle change in the sensitive cell line can 

be used to classify drugs. The classification could reveal novel cell cycle behavioral 

connections between drugs. For example if drug induced mRNA expression data is 

known then different pathways or different expression patterns can be connected 

according to cell cycle behavior.  
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6 Conclusions 

6.1 Results 
Several things have been accomplished in this thesis work. In part 1.4 the goals of the 

thesis are listed. In conclusion all the goals have been reached. A summary is presented 

below.  

 

6.1.1 Model generalization and simulation 

I. Generalization and simulation of the cell cycle model developed by Panetta et al in 

such a way that it can be used to characterizes all known and unknown cell cycle 

specific chemotherapeutic drugs.  

 

Without generalization and simulation of the cell cycle model the result of this thesis 

work would not have been possible to achieve. The used Matlab code is not included in 

this thesis. An experience Matlab programmer should easily be able to reproduce the 

results presented in this thesis work.   

 

6.1.2 Cell lines and cells in silico  

II. Development of artificial (in silico) cancer cell lines defined by parameters in the 

cell cycle model (chapter 3).  

 

One in silico cell line has been developed in this thesis work (part 3.2.1). The work of 

Panetta et al has been used as guidance. In future work, several more cell lines can be 

created by variation of the cell cycle parameters and investigated. 

  

III. Development of artificial drugs that reflects different perturbation of the cell cycle 

parameters (Chapter 3). 

 

20 substances have been developed in silico (part 3.2.2). The substances effect the cell 

cycle in different ways by perturbation of the cell line parameters. It is possible to add 

numerous of substance to the library. Such library could be used to further in silico study 

the performance of the alternative drug search method.  

 

IV. Development of “mutated” cell cycle models in which the model parameters have 

been perturbed in such a way that the mutated cell lines become resistant to the 

original treatment (Chapter 4). 

 

In each of the two examples in chapter 4 (part 4.2 and 4.3) is a resistant cell line defined. 

The resistant cell line is considered to have mutated in such way that it is unaffected by a 

drug induced parameter/parameters change. In the examples is the cell cycle respond of 

treated resistant cancer cells only used. No parameters for an untreated resistant cell line 

are therefore defined in this work. 
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  6.1.3 Alternative drug search method 

V. Evaluate the possibility to perform estimation of the model parameters from time-

series data to define unique “fingerprints” or “signatures” similar to those in C-Map 

database discussed earlier (Chapter 2).     

 

It has been shown that estimation of the model parameters is problematic. The 

estimability of the model parameters are pore. No exact values of the model parameter 

can be obtained. Such behavior causes problems implementing the idea of C-Map using 

cell cycle parameters instead of gene expression signatures. A way to overcome the 

problem of representation was needed. Interval representation was considered. The 

approach seemed promising but was abandon due to numerous issues concerning the 

practical in an alternative drug search method.  

 

VI. Develop an alternative approach to parameter estimation based on Bayesian model 

selection for defining useful “fingerprints” (Chapter 2). 

 

In part 2.4.3 is a novel Bayesian model selection method described. It is shown how the 

method can be used to search for candidate drugs. Subintervals have to be defined. The 

range of each subinterval is a user defined property.  

 

VII. In silico evaluation of the Bayesian fingerprint approach for combating drug 

resistant cancer cells (Chapter 4). 

 

The two examples described in part 4.2 and 4.3 show how the Bayesian model selection 

method successfully can be used to find candidate drugs for treatment of resistant cancer 

cells. The method has the ability to single out treatment effective substances from a 

library with a majority of non effective substances. The treatment effective substances 

have the ability to change the cell cycle response of the resistant cell line such that it 

imitates the cell cycle response of the sensitive cell line again.   

 

6.1.4 Summary 

The results of this work demonstrate that it is feasible to find alterative drug which can 

combat chemotherapeutic resistance in cancer cells using the method developed in part 

2.4.3. In part 1.3 is the guide lines for the development of a novel method used to battled 

drug resistance drawn. The following to points had to be accomplished in order to realize 

such a novel method. 

 

I. Build a cell cycle model which can be used to characterize known and candidate 

cell cycle specific chemotherapeutic drugs. 

 

II. Invent a method which uses the general cell cycle models accordingly to the C-Map 

approach of inverse chemical control in the search of drugs for treatment of 

resistant cancer cells.  
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In conclusion both points have been fulfilled. A novel method for battling cancer 

resistance been has been presented in this thesis work. A next step would be to apply the 

method to in vitro experimental material to further test the methods integrity. 

  

6.2 Limitations 
The applicability in reality of the method used to find alternative drugs which can combat 

chemotherapeutic drug resistance presented in this work depends upon how plausible the 

experimental in silico conditions defined in chapter 3 are.  

 

Moreover, in this work maximum drug effect time delay is not included in the model. 

This could pose a problem. If the time delay is short enough then would it be sufficient 

top use model (1) but as the time delay growths then model (13) should be used to 

capture reality. The draw back with the extended model (13) is the large number of 

parameters. A suggestion in order to reduce the number of parameters would be to obtain 

estimates of the drug effect time delay of the parameters from studies on drug absorption 

and molecule/molecules penetrability.  

 

The measurement noise model is not validated. The noise model should be compared to 

measurement noise obtained from in vivo experiments.  

 

6.3 Future work 

6.3.1 Further computational investigation  

It would be would be a good idea to test the method using several other in silico setups. 

Such work would strengthen the credibility of the method. 

 

Furthermore, the consequences of time delay should be investigate further. One could 

analyze the performance of the method using the extended model (13) and/or investigate 

to what extent estimates of the time delay obtained from studies of drug absorption and 

molecule/molecules penetrability can be used. 

 

Develop a method used to define the parameter subintervals. Such method should include 

parameter estimability.  

 

6.3.2 In vivo experiments 

Planning and execution of in vivo experiments to complete a database containing cell 

cycle time series of drugs and substances. Work should be dedicated to decide what kind 

of drugs and substances to be included. Novel substances with unknown mechanism and 

effect preferable could be included in the database.  

 

The method should be validated using drugs with known cell cycle specific mechanism 

for which the outcome can be guessed.        
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